Room temperature magnetic materials from nanostructured diblock copolymers.

نویسندگان

  • Zoha M Al-Badri
  • Raghavendra R Maddikeri
  • Yongping Zha
  • Hitesh D Thaker
  • Priyanka Dobriyal
  • Raja Shunmugam
  • Thomas P Russell
  • Gregory N Tew
چکیده

Nanostructured magnetic materials are important for many advanced applications. Consequently, new methods for their fabrication are critical. However, coupling self-assembly to the generation of magnetic materials in a simple, straight-forward manner has remained elusive. Although several approaches have been considered, most have multiple processing steps, thus diminishing their use of self-assembly to influence magnetic properties. Here we develop novel block copolymers that are preprogrammed with the necessary chemical information to microphase separate and deliver room temperature ferromagnetic properties following a simple heat treatment. The importance of the nanostructured confinement is demonstrated by comparison with the parent homopolymer, which provides only paramagnetic materials, even though it is chemically identical and has a higher loading of the magnetic precursor. In addition to the room temperature ferromagnetic properties originating from the block copolymer, the in situ generation densely functionalizes the surface of the magnetic elements, rendering them oxidatively stable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties of Cobalt-Containing Diblock Copolymers with Cylindrical Morphology of Different Domain Sizes

Previously, we have synthesized a cobaltcontaining diblock copolymer system which exhibited room temperature ferromagnetic properties after phase separation and heat treatment. We have also shown that the morphology and cobalt density in the nanostructured domains both influenced the magnetic properties of these materials due to nanoconfinement which enhanced the dipolar interactions between ot...

متن کامل

Well-ordered nanostructure SiC ceramic derived from self-assembly of polycarbosilane-block-poly(methyl methacrylate) diblock copolymer.

The fabrication of SiC ceramic materials with an ordered nanostructure through the direct pyrolysis of a self-assembled inorganic-organic block copolymer has generally been unsuccessful even though the versatile processibility has been demonstrated with organic-organic block copolymers. Here we report the synthesis of a novel polycarbosilane-block-poly(methyl methacrylate) diblock copolymer thr...

متن کامل

Structural and magnetic characterization of norbornene–deuterated norbornene dicarboxylic acid diblock copolymers doped with iron oxide nanoparticles

A series of iron oxide doped norbornene (NOR)/deuterated norbornene dicarboxylic acid (NORCOOH) diblock copolymers were synthesized and characterized by X-ray photoelectron spectroscopy (XPS), small angle neutron scattering (SANS) and superconducting quantum interference device (SQUID) experiments. g-Fe2O3 nanoparticles were synthesized within the microdomains of diblock copolymers with volume ...

متن کامل

Superparamagnetic Nanocomposites Templated with Pyrazole-Containing Diblock Copolymers

Monodisperse maghemite nanoparticles, templated in novel, well-defined pyrazole-containing norbornene-based block copolymers, provided a superparamagnetic nanocomposite with high saturation magnetization at room temperature under an applied magnetic field. The synthesis of the polymer nanocomposites and physical, morphological, and magnetic chracaterization of the nanocomposites are reported. M...

متن کامل

Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles.

The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature communications

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011